Efficient computation of highly oscillatory integrals with Hankel kernel

نویسندگان

  • Zhenhua Xu
  • Gradimir V. Milovanovic
  • Shuhuang Xiang
چکیده

In this paper, we consider the evaluation of two kinds of oscillatory integrals with a Hankel function as kernel. We first rewrite these integrals as the integrals of Fourier-type. By analytic continuation, these Fourier-type integrals can be transformed into the integrals on [0, + ), the integrands of which are not oscillatory, and decay exponentially fast. Consequently, the transformed integrals can be efficiently computed by using the generalized Gauss–Laguerre quadrature rule.Moreover, the error analysis for the presentedmethods is given. The efficiency and accuracy of the methods have been demonstrated by both numerical experiments and theoretical results. © 2015 Elsevier Inc. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mean value theorem for integrals and its application on numerically solving of Fredholm integral equation of second kind with Toeplitz plus Hankel ‎Kernel

‎The subject of this paper is the solution of the Fredholm integral equation with Toeplitz, Hankel and the Toeplitz plus Hankel kernel. The mean value theorem for integrals is applied and then extended for solving high dimensional problems and finally, some example and graph of error function are presented to show the ability and simplicity of the ‎method.

متن کامل

Efficient Computation of Oscillatory Integrals via Adaptive Multiscale Local Fourier Bases

The integral ∫ L 0 e iνφ(s,t)f (s) ds with a highly oscillatory kernel (large ν, ν is up to 2000) is considered. This integral is accurately evaluated with an improved trapezoidal rule and effectively transcribed using local Fourier basis and adaptive multiscale local Fourier basis. The representation of the oscillatory kernel in these bases is sparse. The coefficients after the application of ...

متن کامل

Complex Gaussian quadrature for oscillatory integral transforms

The classical theory of Gaussian quadrature assumes a positive weight function. We will show that in some cases Gaussian rules can be constructed with respect to an oscillatory weight, yielding methods with complex quadrature nodes and positive weights. These rules are well suited for highly oscillatory integrals because they attain optimal asymptotic order. We show that for the Fourier oscilla...

متن کامل

On : “ Numerical integration of related Hankel trans - forms by quadrature and continued fraction expansion ”

Chave presents an excellent algorithm and computer subprogram that evaluate Hankel transforms by quadrature and continued fraction summation. This subprogram would be a valuable addition to any mathematical computer library. Chave refers to digital filter (convolution) methods as “the standard numerical approach to the computation of Hankel transforms,” and makes numerous references to my publi...

متن کامل

The kissing polynomials and their Hankel determinants

We study a family of polynomials that are orthogonal with respect to the weight function e in [−1, 1], where ω ≥ 0. Since this weight function is complex-valued and, for large ω, highly oscillatory, many results in the classical theory of orthogonal polynomials do not apply. In particular, the polynomials need not exist for all values of the parameter ω, and, once they do, their roots lie in th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied Mathematics and Computation

دوره 261  شماره 

صفحات  -

تاریخ انتشار 2015